No

Course or ProgramSpecial Doctoral Program for Green Energy Conversion Science and TechnologySubjectInorganic Materials Science	
---	--

Question 1 Answer the following questions.

- (1) Explain how you can experimentally distinguish among α -quartz, SiO₂ glass, and silica gel.
- (2) Classify SiO₂, BaO, Al₂O₃, B₂O₃, CaO, TiO₂, P₂O₅, Na₂O and K₂O as modifiers, intermediates or network formers and explain glass structure.
- (3) Explain crystallization of glass thermodynamically.

			No
Course or Program	Special Doctoral Program for Green Energy Conversion Science and Technology	Subject	Inorganic Materials Science
Question 2 Answer the fol (1) Wri Anode : Cathode : (2) Exp (3) Ban necessary,	lowing questions about splittin te the equations of H ₂ O splittin lain the essential requirements d gap of cadmium sulfide, CdS use $h = 6.6 \times 10^{-34}$ Js, $c = 3.0 \times$	ag of H_2O and photon ng reaction by electron for a photocatalyst to S, is approx. 2.5 eV. 10^8 m/s and 1.0 eV	catalytic materials. olysis on each electrode. for overall H ₂ O splitting by visible light. Estimate the color of the CdS. If = 1.6×10^{-19} J.

No

Course or Program	Special Doctoral Program for Green Energy Conversion Science and Technology	Subject	Inorganic Materials Science
----------------------	---	---------	-----------------------------

Question 3

Answer the following questions as for a magnesium oxide (MgO) crystal. It has a cubic sodium chloride (NaCl)-type crystal structure with a lattice constant of 0.42 nm and a Z value of 4. The Z value of 4 indicates that Mg_4O_4 are included in the unit lattice.

(1) Calculate its density. The Avogadro constant is 6.0×10^{22} mol⁻¹, and the atomic weights of Mg and O are 24 and 16, respectively.

(2) Supposing that the wavelength of X-ray (Cu K α) is 0.15 nm, calculate the angle of the diffraction peak (110).

If necessary, the following values may be used;

 $\sqrt{2} = 1.4$, $\sqrt{3} = 1.7$, $\sqrt{5} = 2.2$ sin 10.5 = 0.18, sin 14.5 = 0.25, sin 17.5 = 0.30, sin 23 = 0.39

No

Course or Program	Special Doctoral Program for Green Energy Conversion Science and Technology	Subject	Inorganic Materials Science

Question 4
Answer the following questions about spectroscopic analyses.
(1) Explain difference between Raman active and IR active for vibration of molecule.
(2) In fingerprint region of IR spectra, what informations can we obtain from the spectra within the
region?
(3) Describe adequate methods for each measurement of IR spectra of powder, thin film on opaque
substrate and colloid solution. Explain process of each method.