Interdisciplinary Graduate School of Medicine and Engineering, Master Course, University of Yamanashi

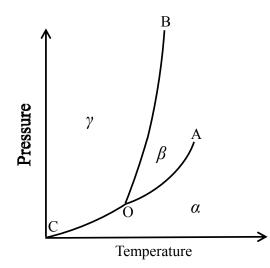
Entrance Examination

No 1/2

Course or Program	Special Doctoral Program for Green Energy Conversion Science and Technology	Subject	Chemistry A	
Overtien 1				

Question 1

Answer the following questions. If necessary, use the value 1 atm = 101.3 kPa = 1.013 bar (1) When the volume of the ideal gas at 1 atm is compressed to half, the temperature raises from 273 to 293 K. Calculate the pressure.


(2) Calculate the work W, when the ideal gas expands under a constant external pressure of 1 atm from 10.1 to 10.3 m³.

Question 2

Figure below shows the phase diagram of carbon dioxide. Answer the following questions. (1) Describe the phase of carbon dioxide in regions α , β , and γ .

(2) What is point O?

(3) Calculate the degree of freedom at the points A, O, and line A-O.

Interdisciplinary Graduate School of Medicine and Engineering, Master Course, University of Yamanashi

Entrance Examination

No 2/2

Course or Program	Green En	ctoral Program for nergy Conversion and Technology	Subject	Chemistry A
Question 3	•		•	·
•				
Answer the f				
	der reactio	on, the conversion	on of the reactant v	vas 40% at 30 min after initiation of
the reaction.	.1 .			
		onstant for the		· · · · 100 · · · · · · · · · · · · · ·
(2) What is t reaction?	he percent	tage of the react	tant that will rema	in at 180 min after initiation of the
reaction				
Question 4				
-	00	80 80	51 52	8
Question 4	1000	300	150 120	0 1
8	1000 500	300 200	150 120	1 0
8	<u>8</u> 8	300	120 15	<u>₽</u>
8				
8	Balmer			g yman →
8				
8				
λ (nm) – Ž	then			
λ (nm) Pasc Pracker As seen in th emit light of	Balmer then then then then then then then then	igure, when elec		man, s passed through gaseous hydrogen,
λ (nn) λ (nn) Pase Pracker As seen in the emit light of Answer the f	Balmer then the upper findiscrete fr collowing q	igure, when elec equencies (atom uestions.	ctric discharge was	yman yman s passed through gaseous hydrogen, um) was observed.

(2) The wavenumbers v of the lines in the spectrum fit the following expression. Calculate the wavelength λ of the transition with $n_1=5$ and $n_2=6$.

$$v = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right), \qquad R_H = 109677 \text{ cm}^{-1}$$

Interdisciplinary Graduate School of Medicine and Engineering, Master Course, University of Yamanashi

Entrance Examination

No 1/2

Course or Program	Special Doctoral Program for Green Energy Conversion Science and Technology	Subject	Chemistry B

Question 1

Bragg's law gives the angles for diffraction from a crystal lattice. Answer the following questions If necessary, Avogadro constant, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ may be used.

1. Let *n* be an integer (n>0), λ the wavelength of incident wave, *d* the spacing between the planes in the atomic lattice, and θ the angle between the incident ray and the scattering planes.

Using the parameters given above, write down Bragg's law.

2. The density of NaCl is 2.18 g cm⁻³. When the Pd K α X-ray was irradiated onto an NaCl crystal, the diffraction from the (100) plane appeared at 6.0°.

1) Draw the crystal structure of NaCl and draw its (100) plane.

2) How many Na⁺ and Cl⁻ ions are there in a unit cell of NaCl? Calculate the mass of a unit cell in grams.

3) Calculate the volume of the unit cell in nm^3 . Calculate the spacing between the (100) planes.

4) Calculate the wavelength of the Pd K α X-ray.

Question 2

What are insulators, semiconductors, and conductors? Explain using illustrations.

Interdisciplinary Graduate School of Medicine and Engineering, Master Course, University of Yamanashi

Entrance Examination

No 2/2

Course or ProgramSpecial Doctoral Program for Green Energy Conversion Science and Technology	Subject	Chemistry B
---	---------	-------------

Question 3

Calculate the molar conductivity $\Lambda_{\rm m}$ of 0.100 mol dm⁻³ KCl aqueous solution with the conductivity of 1.00 S m⁻¹. Draw a graph for the relation between the $\Lambda_{\rm m}$ and the square root of concentration c ($c^{1/2}$) for the KCl solution. Explain the reason of such a dependency.

Question 4

Answer the following questions for an electrochemical cell $Cu \mid Cu^{2+} \parallel Ag^+ \mid Ag$

where the standard electrode potentials at 25°C are given as Cu^{2+} | Cu = 0.34 V, Ag^+ | Ag = 0.80 V.

(1) What are (a) the anode reaction, (b) cathode reaction, and (c) the overall cell reaction?

(2) Calculate the standard electromotive force at 25°C.

(3) Can we expect the overall cell reaction to be spontaneous? Describe the reason.