2013

Interdisciplinary Graduate School of Medicine and Engineering, Master Course, University of Yamanashi

Entrance Examination

<u>No 1/1</u>

Course or Program	Special Doctoral Program for Green Energy Conversion Science and Technology	Subject	Chemistry A
If necessary, the following values may be used when you solve the Questions 1-4: Molar gas constant, $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$; Planck constant, $h = 6.6 \times 10^{-34} \text{ J s}$; Speed of light, $c = 3.0 \times 10^8 \text{ m s}^{-1}$; $\ln 2 = 0.69$; $\ln 3 = 1.1$; $\ln 5 = 1.6$; $\ln 7 = 1.8$; $\ln 10 = 2.3$			
Question 1 Answer the following questions. (1) A cylinder with a piston contains 1 mol of an ideal gas. A friction force is not exerted to the piston. Calculate the energy required when the ideal gas is compressed from 1 atm at 300 K to 10 atm at 300 K. (2) A chemical reaction in a gas mixture at 300 K totally decreases the amount of the gas by 0.2 mol. The gas is assumed to behave ideally in a constant-pressure process. If the internal-energy change is -25 kJ, calculate the enthalpy change.			
 Question 2 (1) The vapor pressure of benzene is 0.13 atm at 27°C and 0.52 atm at 60°C. Calculate the molar enthalpy of vaporization, ΔH_{vap}. (2) Answer the following questions. 2-1) Draw a pressure-temperature phase diagram of water. 2-2) Calculate the degree of freedom in the equilibrium state among water vapor, water, and ice. 			
Question 3 Suppose that rate constants are 0.001 and 0.003 s ⁻¹ at 800 and 1000 K, respectively, in a first-order reaction, answer the following questions. (1) Calculate the half-life at 800 K. (2) Calculate the activation energy of this reaction.			
Question 4 Answer the following questions. (1) Calculate the de Broglie wavelength for a ball $(1.4 \times 10^{-1} \text{ kg})$ traveling at 40 m s ⁻¹ . (2) Calculate the ionization energy (kJ mol ⁻¹) of the hydrogen atom. The empirical Rydberg formula is expressed by $\frac{1}{\lambda} = R_{\infty} \left(\frac{1}{n_1} - \frac{1}{n_2}\right)$ where $R_{\infty} = 1.1 \times 10^5 \text{ cm}^{-1}$.			