2013

Interdisciplinary Graduate School of Medicine and Engineering, Master Course

Entrance Examinations

No 1

Course or ProgramSpecial Doctoral Program for Green Energy Conversion Science and Technology	Subject	Chemistry A
---	---------	-------------

Problem 1.

Answer the following questions.

(1) Calculate the theoretical efficiency of a heat engine operating at $T_{\rm H}$ = 500 K and $T_{\rm L}$ = 400 K. Calculate the heat input $q_{\rm H}$ to the engine and the heat output $q_{\rm L}$ from the engine, when the engine generates a work of 1.00 kJ. (2) The standard enthalpy for the vaporization ΔH°_{vap} of ethanol is 38.6 kJ mol⁻¹ at 350 K and ambient pressure (101.3 kPa). Calculate the standard entropy ΔS°_{vap} for the vaporization of ethanol at 350 K. Explain the thermodynamic meaning of ΔS°_{vap} (especially, sign of the value). Gas Problem 2. Figure on the right shows the boiling-point-composition diagram emperature of the mixture of liquids, A and B. Answer the following questions. t (1) Show the compositions of liquid and gas phases in the equilibrium state at the boiling point, t, using A, B, G and L. (2) Show how the boiling point will change when the mixture of the liquids continues boiling. Liquid G L В Α 100% 100% Composition Problem 3. Answer the following questions. A first-order reaction of the type $A(g) \rightarrow B(g)+C(g)$ was carried out in a gas phase at 25°C. The initial pressure of A and the rate constant for the reaction are 40 kPa and 5.0×10^{-3} s⁻¹, respectively. (1) Calculate the partial pressure of A after 50 s and 5 min. (2) What is the half life of A? Problem 4. Suppose there are two hydrogen atoms, H_a and H_b, with 1s orbitals, ϕ_a and ϕ_b , respectively, around the atoms. H_a and H_b form a hydrogen molecule. (1) Based on the linear combination of atomic orbitals (LCAO) method, how are the bonding (Φ_+) and anti-bonding (Φ_{-}) orbitals formulated? (2) Let the energy of ϕ_a and ϕ_b be E_0 and the energy of Φ_+ be E_+ , where $E_0 > E_+$. How large is the bonding

energy E at the steady state?

(3) How is the probability density of electrons in Φ_+ formulated around the hydrogen molecule?

(4) Based on the LCAO method, explain why He₂ atoms are not stable.

2013

Interdisciplinary Graduate School of Medicine and Engineering, Master Course

Entrance Examinations

<u>No 1</u>

Course or Program	Special Doctoral Program for Green Energy Conversion Science and Technology	Subject	Chemistry B		
Problem 1. In the absorption spectroscopy, relationships are investigated between the absorption of light and the properties of the material through which the light travels. Let the transmission be <i>T</i> , the distance the light travels through the material, <i>L</i> , the absorption coefficient of the material, ε , and the molar concentration of absorbing species in the material, <i>c</i> . For liquid, there is a relationship written as follows: $T = \frac{I}{I_0} = 10^{-\varepsilon Lc}$ (Eq. 1) 1) Suppose $I_0 = 62,500$ counts/s and $I = 62,200$ counts/s, calculate the transmission, <i>T</i> , and the absorbance, <i>A</i> . 2) Suppose $T = 0.9$, $\varepsilon = 11.0$ m ⁻¹ M ⁻¹ and $L = 10.0$ mm, calculate the concentration of the liquid. 3) In optics, what is this relationship stated in Eq. 1 called?					
Problem 2. Calculate the d_{200} and $2\theta_{200}$ values for the 200 line in X-ray diffraction pattern, Cu $K\alpha$ radiation (wavelength $\lambda = 0.1541$ nm), of a cubic structure with a lattice constant $a = 0.50$ nm. Problem 3. Answer the following questions. (1) What elements are added to silicon to make it p-type? (2) Sketch the energy band structure of p-type silicon with a band gap of 1.1 eV and an energy gap 0.1 eV					
for the acceptor levels. Problem 4. Answer the following questions for the reaction. $Zn + Cu^{2^+} \rightarrow Zn^{2^+} + Cu$ (1) What are the anode and cathode reactions? (2) Calculate the standard electromotive force for $\Delta G^\circ = -212.3$ kJ at 25 °C. (3) Calculate the electromotive force at 25 °C when the activities of Cu ²⁺ and Zn ²⁺ are 0.2 and 0.6, respectively. If necessary, the following values may be used; Faraday constant, $F = 96500$ C mol ⁻¹ Molar gas constant, $R = 8.314$ J K ⁻¹ mol ⁻¹					